

МИКРОФЛЮИДНЫЕ ТЕХНОЛОГИИ ДЛЯ РАЗВИТИЯ МАЛОТОННАЖНЫХ И СРЕДНЕТОННАЖНЫХ ПРОИЗВОДСТВ

НОВЫЕ ПРОИЗВОДСТВА В РАМКАХ ОСОБОЙ ЭКОНОМИЧЕСКОЙ ЗОНЫ «АВАНГАРД»

Эпихлоргидрин

2024 г.

52,5

Эпоксидные смолы 2024 г.

LER 75 SER 40

Бисфенол A (БФА) 2024 г.

120

Изопропилбензол и изопропанол 2020 г. ИПБ 160 ИПС 60

НЕФТЕХИМИЧЕСКИЙ ПРОМЫШЛЕННЫЙ КЛАСТЕР Внесен в реестр кластеров Минпромторга России приказом №4715 от 26.12.2006 г.

ДМК, ДФК и поликарбонаты ДМК 85,6 ДФК 46,7 ПК 100

Этил-трет-бутиловый эфир 2024 г.

380

220

Изомеризация н-бутана и дегидрирование изобутана, 2024 г.

ПГУ-120 2024 г. ЭЭ 65 Пар 300

Водород методом КЦА 2020 г.

4

ОМСКИЙ БИОКЛАСТЕР

Внесен в реестр кластеров Минпромторга России приказом №3815 от 28.10.2016 г.

Комплекс переработки масел, 2024 г. Гл-н 52 ВЦК 520

СОЗДАНИЕ НОВЫХ ПРОМЫШЛЕННЫХ ТЕХНОПАРКОВ

Фармацевтика, средства химической защиты растений, микрофлюидика, особо чистые вещества

0

ОМСКИЙ БИОКЛАСТЕР

Внесен в реестр кластеров Минпромторга России прихазом №3815 от 28.10.2016 г.

Завод глубокой переработки зерна 2024 г.

860

ЦЕЛИ ПРОЕКТА

Создание широкого ассортимента продуктов малотоннажной химии (МТХ) путем реализации некапиталоемких, гибких и эффективных микрореакторных технологий

Формирование инновационного подхода ГК «Титан» для поддержки федеральных программ восстановления МТХ и импортозамещения на период до 2030 года

Распоряжение Правительства Российской Федерации №2834-р от 15 декабря 2017 года

ПРИНЦИПЫ СОЗДАНИЯ МАЛОТОННАЖНЫХ ПРОИЗВОДСТВ

- Внедрение новых нестандартных технологий для синтеза микрофлюидные технологии
- Создание «модульных» технологий нефтехимического производства
- Осуществление синтеза спектра веществ на одной промышленной установке (полипринцип для производств)

- Реализация проектов по созданию продуктов высоких переделов
- Создание научно-производственных площадок на территории существующих промышленных площадок
- Создание технологий с использованием принципов «Индустрии-4.0» для сокращения сроков и затрат на разработки

РЕЗУЛЬТАТ ПЕРЕХОДА К МИКРОРЕАКТОРНОЙ ТЕХНОЛОГИИ

Высокое качество продукции при низкой себестоимости

Низкие САРЕХ и ОРЕХ

Увеличение производительности в 10 раз

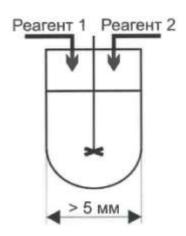
Уменьшение размеров установки в 10 раз

Экономия электроэнергии в 7 раз

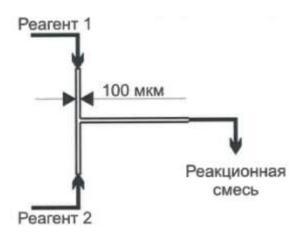
Непрерывный процесс

Безопасность для человека и окружающей среды

Высокая степень автоматизации


Новые высокопроизводительные рабочие места

МИКРОСТРУКТУРИРОВАННЫЙ РЕАКТОР


Микрореактор – это устройство, в котором химические реакции протекают в ограниченном пространстве с типичными размерами каналов < 4 мм.

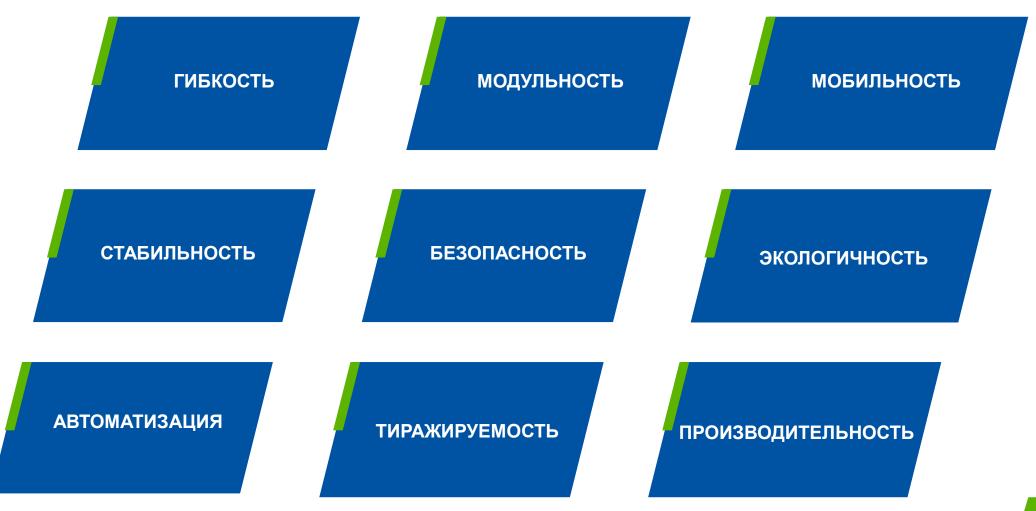
Микрореакторы являются «миниатюрными химическими заводами», позволяющими точно контролировать реакции и экономить использование экологически опасных веществ.

Традиционный реактор

Соотношение площади контакта к объему реакционной смеси ниже 100 м²/м³

Микрореактор

Соотношение площади контакта к объему реакционной смеси от 10 000 до 50 000 м²/м³


ОСНОВНЫЕ ПРЕИМУЩЕСТВА МИКРОРЕАКТОРОВ

- Реактор идеального смешения и вытеснения
- Площадь контакта до 500 раз выше,
 чем в стандартных аппаратах
- 🥊 Идеальный теплообмен
- Работа при высоких давлениях и в сверхкритических условиях без специального сертифицирования
- Работа при низкихи высоких температурах

- Короткое время реакций
- Синтез без образования побочных и промежуточных продуктов
- Быстрое и точное изменение параметров процесса
- Аналитика в режиме реального времени
- Проведение сложных многоступенчатых синтезов, не подвластных стандартному объемному методу

ОСНОВНЫЕ ПРЕИМУЩЕСТВА ПРОИЗВОДСТВА МИКРОРЕАКТОРНОГО СИНТЕЗА

НЕПРЕРЫВНЫЙ ПРОЦЕСС ПРОИЗВОДСТВА ФАРМАЦЕВТИЧЕСКИХ СУБСТАНЦИЙ

Производственный цикл короче в 30 раз по сравнению с традиционной технологией

НЕПРЕРЫВНЫЙ РЕАКТОРНЫЙ МОДУЛЬ ДЛЯ ПРОИЗВОДСТВА ЭПОКСИДНЫХ СМОЛ — ЗАКРЫТИЕ ВСЕГО МИРОВОГО АССОРТИМЕНТА СПЕЦИАЛЬНЫХ МАРОК

- Размер 0,8х1,0х1,95 м
- Потребляемая мощность 3 кВт
- Производительность 10 л/час
- Полная автоматизация
- Аналитика в режиме online
- Температура реакции от 0 до 200 °С
- Давление до 100 бар
- Тиражирование модулей

НАПРАВЛЕНИЯ МИКРОРЕАКТОРНОГО СИНТЕЗА

Синтезы

- Гидрирование
- Оксидирование
- Эпоксидирование
- Окисление
- Алкализация

- Этерификация
- Разложение спиртов
- Реакции замещения
- Нуклеофильное ароматические замещение
- Реакция Бородина
- Реакция Шоттена-Баумана
- Реакция Мицунобу
- Реакция Виттига

Биохимия

- Синтез пептидов
- Модификация наночастиц металлов и оксидов протеинами
- Конъюгация протеинов

Синтез наночастиц

- Синтез наночастиц полимеров
- Синтез наночастиц металлов и оксидов

Мультикомпонентные реакции

- Реакция Пассерини
- Реакция Бигинелли
- Реакция Уги

ПЕРЕЧЕНЬ ПРОДУКТОВ ПРОГРАММЫ МИНПРОМТОРГА ПО ИМПОРТОЗАМЕЩЕНИЮ В ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ

Микрофлюидика позволяет выполнить данную программу за короткий срок

- **Р** Глифосат
- Гидроксиламин сернокислый кристаллический
- Озонобезопасные хладоны этанового ряда
- Р Высшие жирные спирты
- 🥊 2-метилнафталин
- 🥊 Линейный альфаолефин, гексен-1
- 🥊 Изоцианаты MDI
- Теплоизоляционный материал на основе аэрогеля
- Диоксид кремния высокочистый тонкодисперсный синтетический аморфный (некристаллический)
- 1,4 бутандиол

- Реакторные порошки сверхвысокомолекулярного полиэтилена
- Р Изопропиловый спирт марки «х.ч.»
- 🥊 Полиолефиновая высокопрочная нить
- Диметиловый эфир (ДМЭ)
- 🎐 Эфир винил-н-бутиловый
- Тетрагидроиндол
- 🥊 2,5-димеркапто-1,3,4-тиадиазол
- Продукты на основе сульфаминовой кислоты
- Ментол кристаллический
- Фенольно-уретановые связующие для литейной промышленности

ОРГАНИЗАЦИЯ НОВЫХ ПРОИЗВОДСТВ МАЛОТОННАЖНОЙ ХИМИИ НА БАЗЕ ГК «ТИТАН»

Направления, технологии и работа со сложными реагентами, которые не производятся или производятся в малых количествах в РФ

Базовая химия

- Гидрирование
- РеакцииФриделя–Крафтса
- Окисление
- Восстановление
- Бромирование

- Нитрирование
- Галогенирование
- Сульфирование
- Хлорирование
- Фторирование с пом. НF
- Галикс-реакции

Сложные реагенты

- Фосген
- Гидрат гидразина
- Окись этилена
- Сложные гидриды
- Окись углерода

Технологии

- Перекрестное соединение
- Ассиметричный каталитический синтез
- Гидрирование
- Перевод гидрогенизации

- Металлоорганическая низкотемпературная химия
- Реакции Гриньяра
- Ферментативные реакции

ОРГАНИЗАЦИЯ ДИВИЗИОНА ДИСТРИБУЦИИ ИНТЕРМЕДИАТОВ (ПОЛУФАБРИКАТОВ) ДЛЯ ТОНКОГО ХИМИЧЕСКОГО СИНТЕЗА

Дериваты фосгена

- Хлорформиаты: потребность 600 т (фенилхлорформиат, метилхлорформиат)
- изоцианаты: потребность 700 т (фенил изоцианат, мета-толил-изоцианат)
- Хлорангидриды: потребность 2000 т
- Сульфомоил хлориды: 2500 т (изопропилсульфомоил хлорид 2500 т; N,N — диметилсульфомоил хлорид)
 - 1,1 карбонилдиимидазол 30 т

Потребители интермедиатов: фармацевтика, агропроизводители, строительная химии, авиа- и машиностроение

Производитель: известная немецкая компания

Рынок РФ: ниша почти свободна, преобладает импорт

Потребность: до 10 млн. единиц интермедиатов

Преимущества: упрощение синтеза продуктов, уменьшение производственных затрат.

Перспективы: проект поспособствует развитию партнерских отношений между России и Германией. Согласно Государственному Плану РФ до 2030 года будет реализован проект производства ДВ пестицидов и полупродуктов МХТ. Данный проект может стать совместным при комплексной поддержке государства. (Распоряжение Правительства РФ № 2834-рт 15 декабря 2017 г.

ГК «Титан» определит наиболее важные товарные позиции по интермедиатам для РФ (в т.ч. перспективной организации производства)

ПРЕДЛАГАЕМЫЕ МЕРЫ ГОСПОДДЕРЖКИ ДЛЯ ИНВЕСТПРОЕКТОВ В СФЕРЕ БИОТЕХНОЛОГИЙ

- Субсидирование затрат для предприятий биотехнологий (в т.ч. пр-во биоразлагаемого пластика): на оборудование 50 %, на инфраструктуру 100 %
- Расширение субсидирования части процентных ставок в рамках КППК на внутренний рынок
- Увеличение госфинансирования НИР и НИОКР для предприятий биотеха
- Введение отрицательного акциза на производство биоэтанола (аналогично принципу по переработке бензола) в НК РФ

- Возможность введения запрета на использование метанола в омывающих жидкостях с введением уголовной ответственности
- Выделение в отдельный проект технологию микрофлюидики в малотоннажной химии как один из наиболее перспективных

Производство оксигенатов на базе возобновляемых источников энергии позволит к 2024 г. в городах с 15-миллионным населением снизить уровень выбросов от автотранспорта: 40% бензин, 60% дизельное топливо

Группа компаний «Титан»

644035, Российская Федерация, г. Омск, проспект Губкина, 22

Тел.: +7 (3812) 29-95-55

www.titan-group.ru

e-mail: info@titan-group.ru

ГК «ТИТАН» РАССМАТРИВАЕТ ВОЗМОЖНОСТЬ СОЗДАНИЯ СЛЕДУЮЩИХ ПРОИЗВОДСТВ

Направление		Перечень продукции	Потребность , объем импорта и ср.цена
Базовая химия для выпуска Действующих Веществ пестицидов,		Гидразин Гидрат CAS: 10217-52-4	3000 т (импорт 701 т + 2299 т в растворах)
фармсубстанций, строительной химии, авиаот машиностроения	виаотрасли,	1,2,4- триазол CAS 288-88-0	1500 т
		Фосген CAS: 75-44-5	6000-8500 т (в т.ч. пр-во изоцианатов)
Активные ингредиенты / Действующие Вещества на основе базовой химии (список будет дорабатываться)	Фунгициды	Пропиканазол CAS 60207-90-1	1208 т, \$19/кг
		Тебуканазол CAS 107534-96-3	2500 т, импорт - 948 т, \$20 /кг
		Эпоксинидазол CAS 133855-98-8	350 т., импорт - 41 т, \$110/кг
	Гербициды	Метаметрон CAS 41394-05-2	950 т импорт - 790 т, \$23/кг
		Азодикарбонамид (порофор) CAS 123-77-3, карбамид (мочевина)	3500 т импорт 3938 т, \$ 5,8/кг
		Бентазон (группа сульфамиды) CAS 25057-89-0	9000 т импорт - 6063 т, \$16,1/кг
		Фенмедифам (группа карбаматов) CAS 13684-63-4	импорт - 839 т, \$22/кг
		Десмедифам (группа карбонатов) CAS 13684-56-5	импорт - 800 т, \$22/кг
		Метахлор CAS 151218-45-2	900 т импорт - 790 т, €4,90/кг
Репелленты		Saltidin (Icaridin; Picaridin) CAS 119515	1000 т
инновационный репеллент , рассматрива	•		
сообществом как наиболее успешная эк			
безопасная замена по токсикологическим	•		
нем ДЭТА . Протестирован и рекомендов средства защиты детям с 6 мес и беремо кенщинам.			
Синтез фенолсодержащего гербицида		Феноксапроп-п-этил CAS 66441-23-4	520 т, \$51,2/кг

ПРЕДЛАГАЕМЫЕ ТЕХНОЛОГИИ

для включения в перечень перспективных по ППРФ 1649-2021

Наименование	Отрасль	Ориентировочные объемы потребления в РФ , тыс.т/г	Ориентировочная стоимость, \$/кг
Инновационная микрофлюидная технология синтеза Метионина	Ветеринария	60	3,1
Инновационная микрофлюидная технология производства Поливинилпирролидона	Фармацевтика	уточняется	уточняется
Инновационная микрофлюидная технология производства Пропофола	Фармацевтика	уточняется	уточняется
Инновационная микрофлюидная технология производства Гидразин Гидрат	XC3P, пластмасс, резины, компонентов ракетного топлива	3	16
Инновационная микрофлюидная технология производства 1,2,4 Триазола	XC3P, репелленты	1,5	7
Инновационная микрофлюидная технология производства Фосгена	XC3P, пластмасс, красителей, изоцианатов (MDI/TDI)	8	15
Инновационная технология производства Низкомолекулярного Полиизобутилена молекулярной массы 500-800 мг/моль, применяемого в композициях присадок для топлив последнего поколения	Нефтехимия	10	1,8
Инновационная технология производства Полибутилентерефталата , применяемого в автомобилестроении, строительстве, электротехнике, радиоэлектронике и коммуникации, компьютерной технике и машиностроении.	Нефтехимия	25	2,7
Инновационная технология синтеза Поливинилбутиловых эфиров различной молекулярной массы в присутствии двухкатализаторной системы галогенидов металлов IV и V групп в среде одноатомного спирта	Нефтехимия	5,6	6,5