





Proven Way for successful Production Units by Stefan Deiß Head of Technology Management Polymers

### **PET Poly & SSP**





Safeguarded way for successful Clients

- 1. State of the Art Polycondensation Unit
- 2. Newest Solid State Polycondensation Technology
- 3. Total Plant Optimization
- 4. Benefits for our Client

### **PET Poly & SSP**

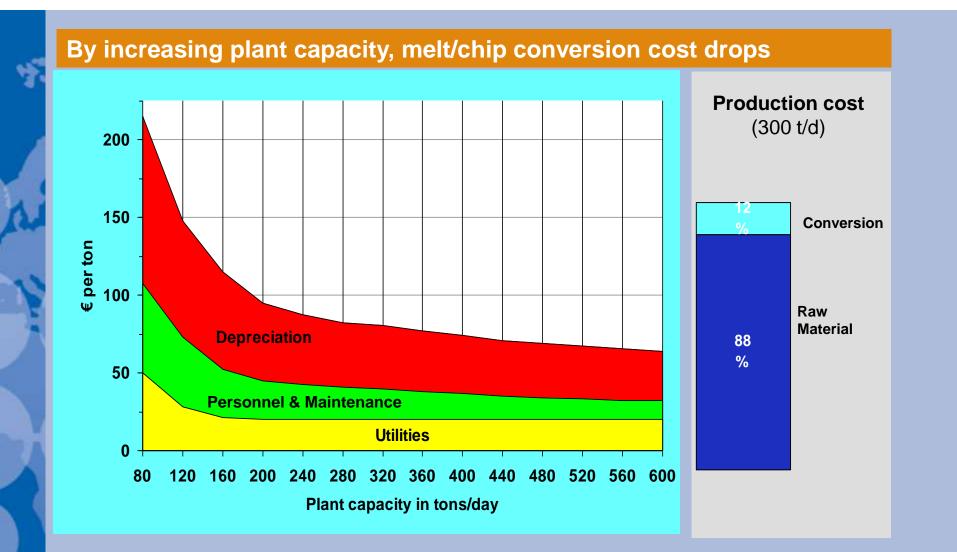




#### 1. State of the Art Polycondensation Unit

#### **Profitability of plants based on:**

#### Iow conversion cost of product


- investment cost
- personnel and maintenance costs
- utilities cost
- plant reliability
- environmentally friendly process

#### excellent product quality

- controlled by the process (melt polycondensation and SSP)
- controlled by co-monomers
- controlled by additives

### PET Poly, low conversion cost of product







# **Plant Reliability**

There are Zimmer customers who operate their plants up to 6 years without shut down, e.g. JCT / India.

- Due to local legal regulations inspection of equipment is ordered
  - in Germany every 5 years inside inspection of reactors
  - in Taiwan every 2 years check of safety-valves

### Mechanical maintenance cycle

- Zimmer's recommendation: every 3 years operation, plant shut down for regular general maintenance, continuous preventive maintenance granted
- Zimmer's clients: mainly every 4 6 years operation, plant shut down for regular maintenance depending on:
  - local authorities
  - plant operation
  - preventive maintenance

### PET Poly & SSP, low conversion cost of product



### On stream factor of polycondensation plant & SSP

- Required time for shut down and maintenance
  - shut down and cooling down of equipment for inspection
     3 days
  - inspection of equipment, exchange of mechanical seals
     1 day
  - heating-up and leak check of plantrestart of plant1 day
    - Total 7 days

Based on a shut down period of 7 days every 3 years, the yearly operation time is calculated to 363 days.

**363 days operation per year** → On stream factor: 99.45%



### Environmentally friendly process

### Iow energy consumption because of:

- low mol ratio
- low temperature in esterification
- EG-jet

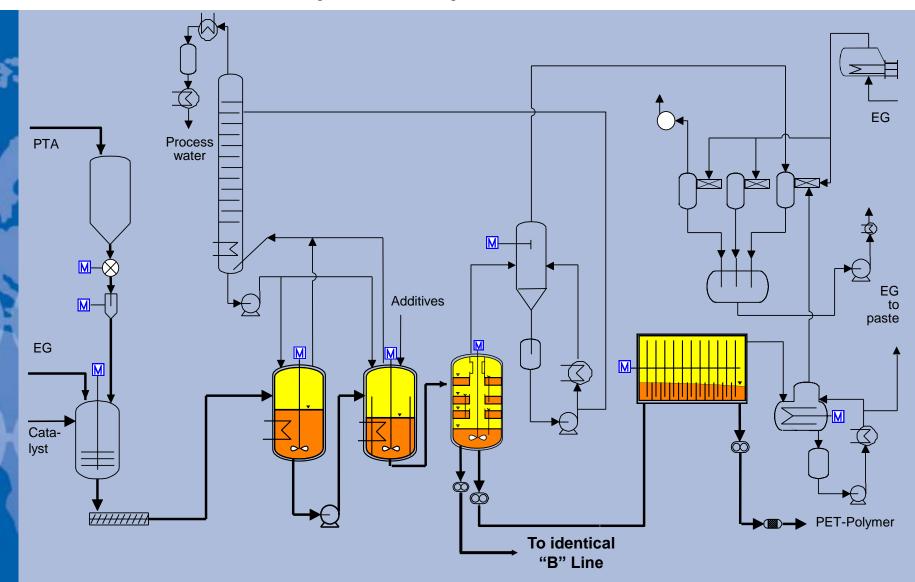
### less waste water

- no waste water from polycondensation (refer to vacuum system)

### waste water is precleaned in stripper column

### emission

- off gas is thermally treated in HTM unit


#### **Result:**

- efficient and safe
- values according to TA-Luft regulations

# PET-Poly, Economic 4-Reactor Plant concept Zimmer



Lowest conversion cost / plant concept



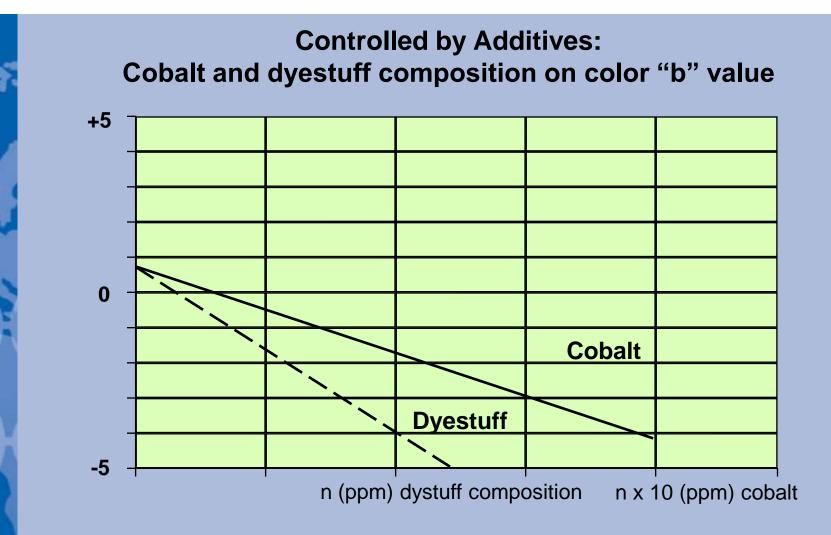
# PET-Poly, Economic 4-Reactor Plant concept **Zimmer** Lowest conversion cost / plant concept

#### Process conditions at design capacity

|                       |      | Paste     | E 1   | E 2  | PP   | DRR  |              |
|-----------------------|------|-----------|-------|------|------|------|--------------|
| MR                    |      | 1.1 - 1.2 | 1.75  |      |      |      |              |
| Temperatur            | °C   |           | 262   | 266  | 274  | 282  |              |
| Pressure              | mbar |           | 1 600 | 1100 | 15   | 1    |              |
| Residence time        | min  |           | 225   | 90   | 75   | 120  | ∑ <b>510</b> |
| Esterification degree | %    |           | 92    | 96.8 | 99.3 | 99.7 |              |
| Chainlength           |      |           | 4.5   | 6.6  | 22   | 86   |              |
| IV                    | dl/g |           | 0.09  | 0.11 | 0.25 | 0.60 | _            |

#### Confidential

### PET Poly, low conversion cost of product

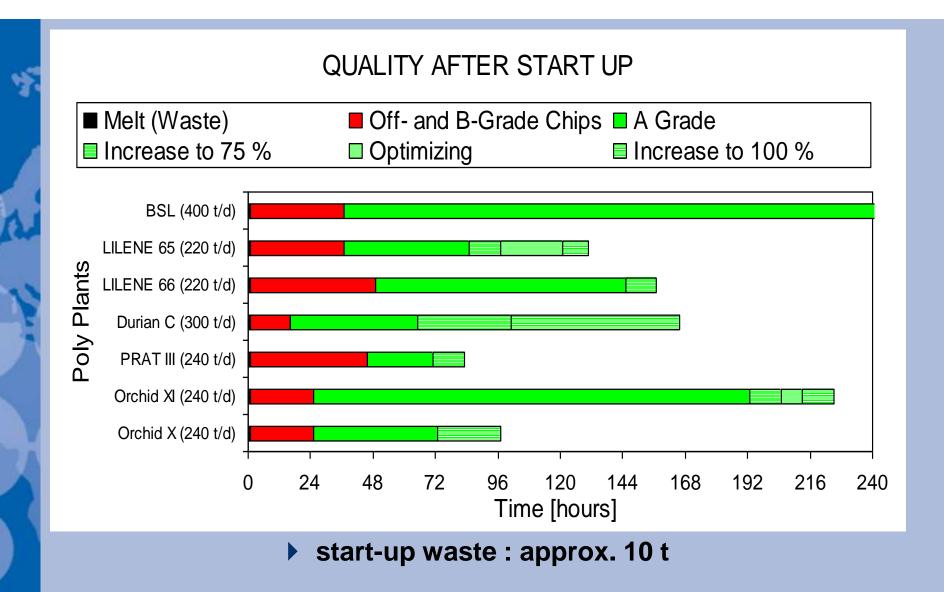



|   |                             |                      | SABIC              | 1200         | Bottle grade | Poly & SSP |                 |       |                   |
|---|-----------------------------|----------------------|--------------------|--------------|--------------|------------|-----------------|-------|-------------------|
| - |                             |                      | (USG Cutter; Air C | ondenser)    |              |            |                 |       |                   |
|   |                             |                      |                    |              |              |            |                 |       |                   |
|   |                             |                      |                    | 2x DRR       |              | 2x 600 t/d |                 |       |                   |
|   |                             |                      | PTA Conveying      | Poly (AB+AH) | KB amorph    | SSP        | KB bottle grade | НТМ   | Total             |
| 4 | Electric Power              | [kWh/t]              | 3,17               | 58,20        | 0,05         | 80,00      | 0,17            | 15,92 | 157,50            |
| 1 |                             | [ICOVINC]            | 0,11               | 00,20        | 0,00         | 00,00      | 0,11            | 10,02 | 101,00            |
| P | Steam                       | [kg/t]               |                    | 11,67        |              |            |                 |       | 11,67             |
| 1 | Soft Water                  | [m³/t]               |                    | 0,06         | <u>]</u>     |            |                 | 0,12  | 0,18              |
|   |                             |                      |                    |              |              |            |                 |       |                   |
|   | Demin. Water                | [m³/t]               |                    | 0,05         |              |            | 1               |       | 0,05              |
| 3 | Chilled water               | [m³/t]               |                    | 1,00         |              |            |                 |       | 1,00              |
| ٦ |                             |                      |                    |              |              |            |                 |       |                   |
|   | Cooling Water               | [m³/t]               | 0,38               | 37,5         |              | 5,33       |                 | 0,50  | 43,71             |
|   | Compressed Air              | [m <sub>n</sub> ³/t] |                    |              | 70,00        | 1,92       | 35              |       | 106,92            |
|   |                             | Fred a d             |                    |              |              | .,         |                 |       | ,.                |
|   | Instrument Air              | [m <sub>n</sub> ³/t] | 0,08               | 1,21         | 0,04         | 1,00       | 0,04            | 0,21  | <mark>2,58</mark> |
|   | Nitrogen                    | [m <sub>n</sub> ³/t] | 1,67               | 0,92         |              | 8,00       |                 | 0,08  | 10,67             |
| 2 |                             |                      |                    |              |              |            |                 |       |                   |
| ١ | Fuel Gas<br>( 37260 kJ/m³ ) | [m <sub>n</sub> ³/t] |                    | 62,50        |              | 8,50       |                 |       | 71,00             |
|   | (                           |                      |                    |              |              |            |                 |       |                   |



|   | Bottle polymer                                                                                                               |                                                                                                               |  |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|
| ł | polymer properties                                                                                                           | bottle quality / bottle production                                                                            |  |  |  |
|   | 1. controlled by the process<br>- viscosity<br>- AA-content<br>- color<br>- purity<br>• ash content<br>• products of thermal | mechanical strength of the bottle<br>influence of taste<br>brilliance<br>clarity and crystallization behavior |  |  |  |
|   | destruction<br>- AA-reformation<br>- dust content                                                                            | AA-content in pre-form gels and fish eyes in bottles                                                          |  |  |  |

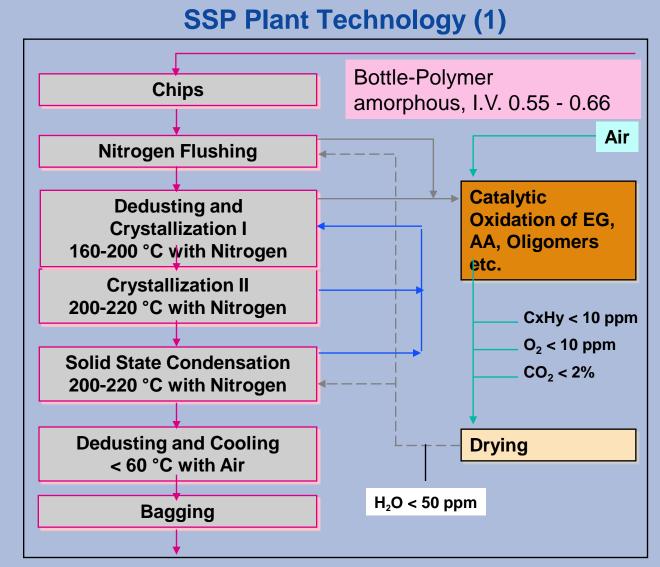







| polymer properties             | bottle quality / bottle production                    |
|--------------------------------|-------------------------------------------------------|
| 2. controlled by co-monomers   |                                                       |
| - Co-monomere<br>content       | optimized cycle time in preform-manufacturing         |
| - melt temperature             | AA-reformation during preform production              |
| - crystallization<br>behaviour | clarity, cycle time during production<br>of pre-forms |
| - glass transition point       | refill ability of the bottle                          |

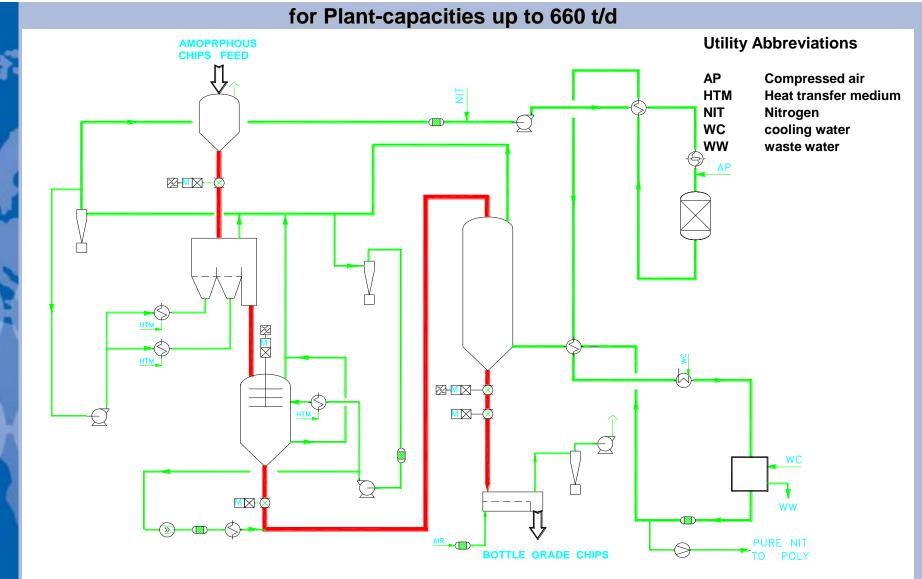



| N.      | polymer properties         | bottle quality / bottle production                                                                       |
|---------|----------------------------|----------------------------------------------------------------------------------------------------------|
| 4       | 3. controlled by additives |                                                                                                          |
| 11/1 5- | - stabilizer               | increased thermo-stability<br>• lower AA-content<br>• lower IV-drop<br>• reduced discoloration           |
|         | - IR-absorber              | better performance during stretch-blow<br>molding<br>• reduced power consumption<br>• increased capacity |

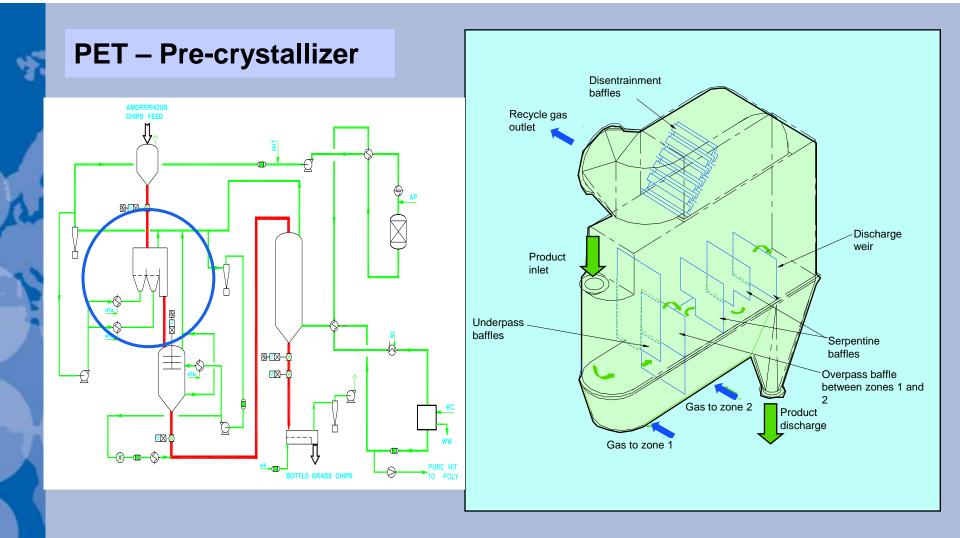










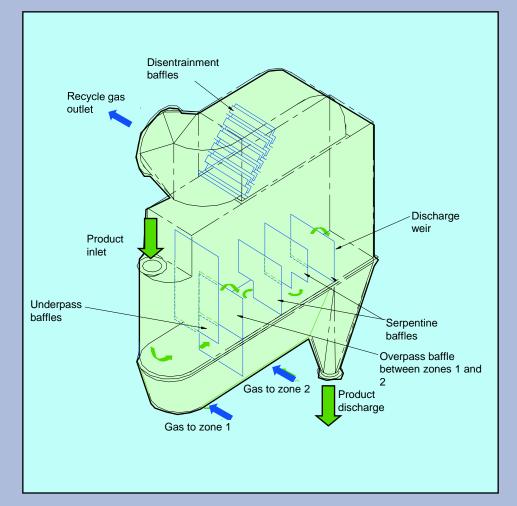


### PET SSP



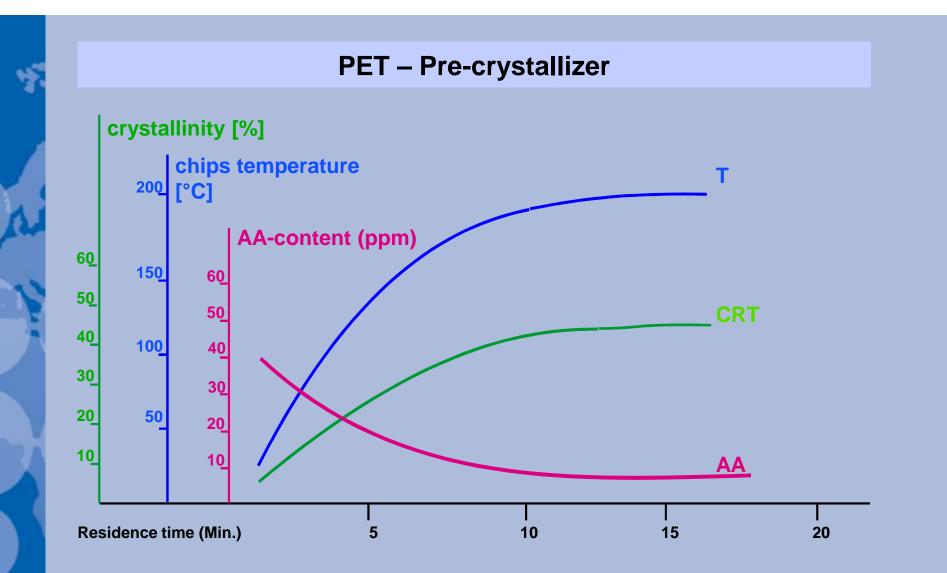
#### **SSP Plant Technology**





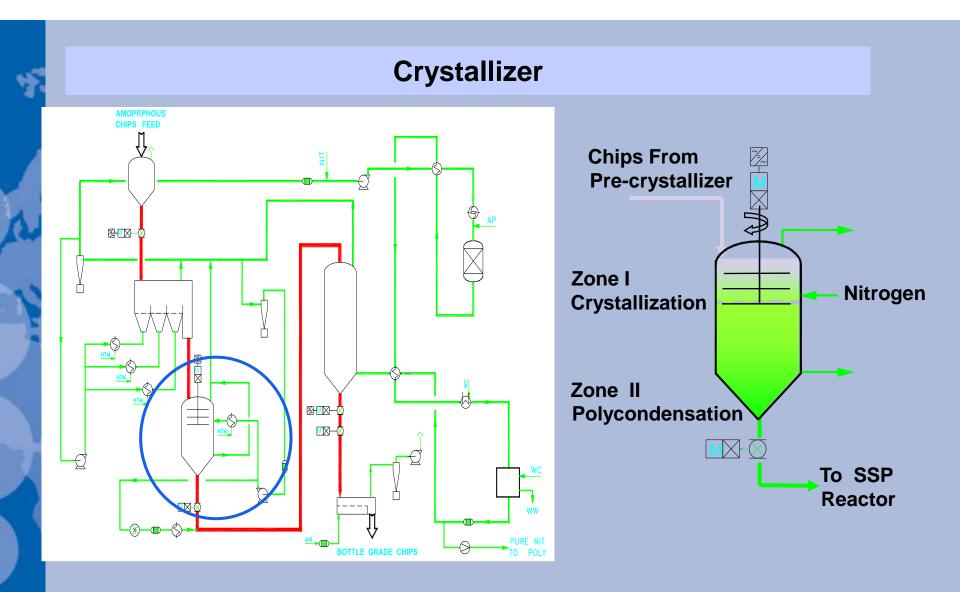



#### 04.07.2024




#### **PET – Pre-crystallizer**

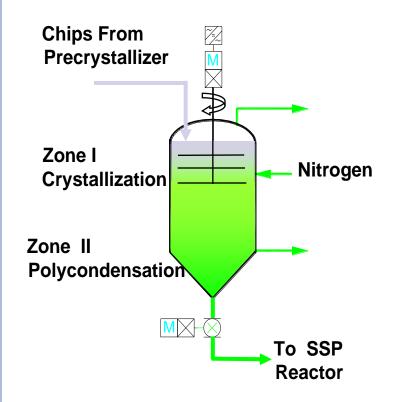
- crystallisation under nitrogen
  - oxygen free atmosphere prevents polymer degradation
  - A crystallizer can be operated at a higher temperature level
  - Note: Not
  - high nitrogen velocity through the chips bed
    - ই optimum de-dusting
    - ষ্ণ high heat transfer coefficient



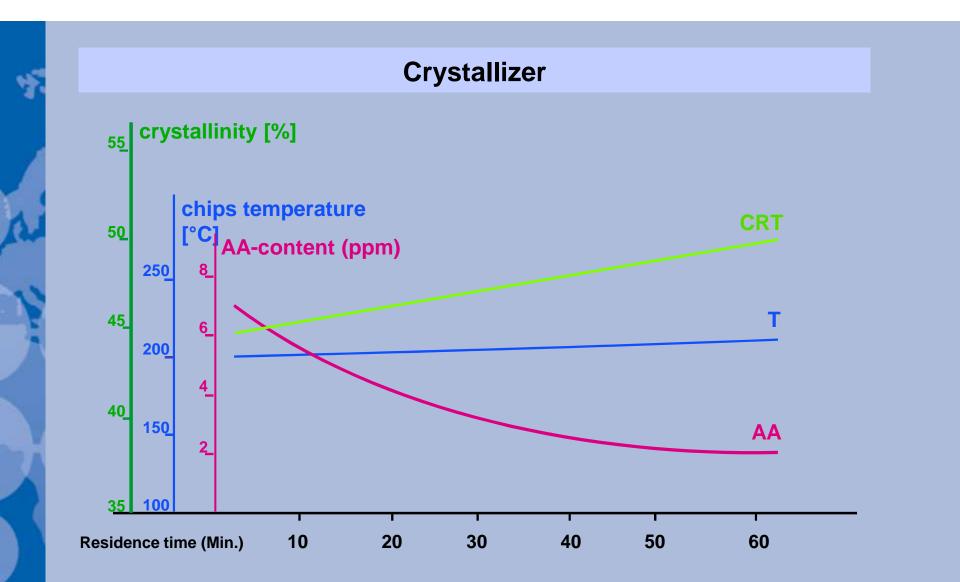





04.07.2024





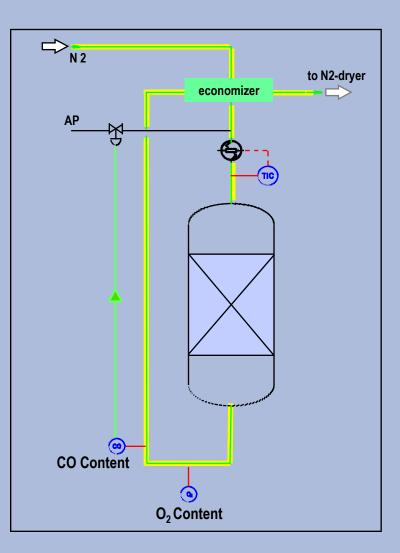

### Crystallizer

- uniform crystallization by tube crystallizer
- uniform residence time
- minimum mechanical stress
- no dead spots
- effective transport of the impurities
- limited dust generation



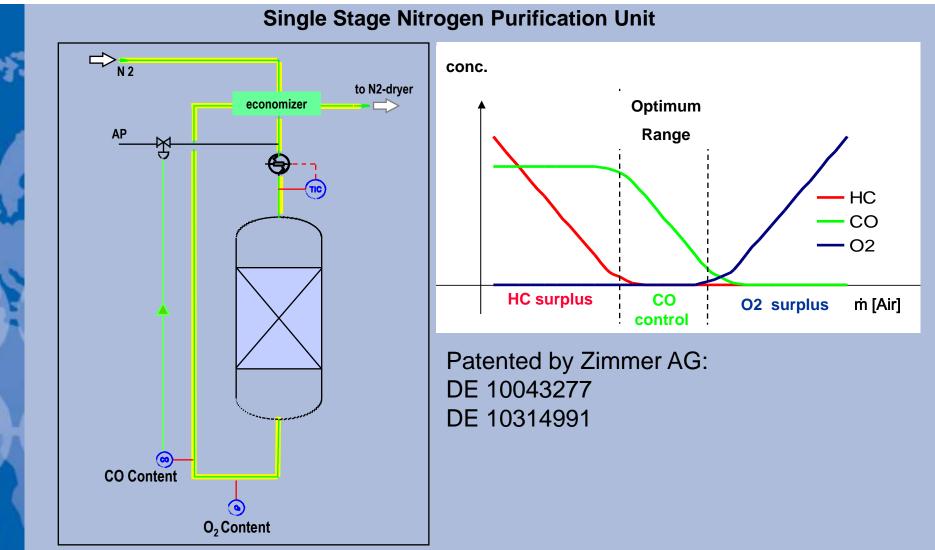









#### SSP Plant Technology Single Stage Nitrogen


**Purification Unit** 

- oxygen content < 5ppm after purification</li>
  total organic content (TOC)
  - < 10 ppm after purification</p>
- water content
  - < 50 ppm after N<sub>2</sub> dryer
- water and carbon dioxide as only effluents
- hydrogen not required
- only technical Nitrogen required (< 2% O<sub>2</sub>)
- CO-content used for control
  - no surplus of  $O_2$  or TOC
- Generation of pure nitrogen
  - usage for other plants/consumers





#### **SSP Plant Technology**



### **PET Poly & SSP**



### Quality demands on final bottle polymer (after SSP)

#### AA-reformation during pre-forming depends on:

- melt temperature
- residence time in injection molding system
- prior formation of vinylester-endgroups in polycondensation and SSP

#### AA-reformation rate [ppm/s]

| temperature        | 270 °C | 280 °C | 290 °C                |
|--------------------|--------|--------|-----------------------|
| Caripack (Shell)   | 0.0141 | 0.0249 | 0.0533 Zimmer process |
| comparison product | 0.0236 | 0.0389 | 0.0780 (US-market)    |

#### AA-content in preforms

projected requirement of the market depending on different applicationwater packaging:1-3 ppmCSD packaging:2-5 ppmgeneral purpose:4-8 ppm

#### **PET Poly & SSP**



| Bottle - PET resin processing     |
|-----------------------------------|
| Effect of Co-monomers DEG and IPA |

### on the cycle time

Pre-form: 51 g (bottle: 1,5 l)

| Cycle time<br>(sec) | IPA<br>(wt %) | DEG<br>(wt %) |
|---------------------|---------------|---------------|
| 18,0                | 2,5           | 1,3           |
| 20,0                | 2,0           | 1,3           |
| 21,5                | 1,5           | 1,3           |

### PET Poly & SSP, Total Plant Optimization

- **Optimization by Process Technology, Reactor Design** 
  - Usage of different catalysts, Sb-based and Ecocat, possible
    - Impact on Polycondensation Reactors
    - Impact on SSP Reactor
- Optimization by Process Technology, Utilities
  - Purified Nitrogen will be generated inside SSP for Continuous Polycondensation
  - Nitrogen with organic load from Continuous Polycondensation will be cleaned in SSP
    - Reducing technical nitrogen consumption
    - Reducing propane gas consumption
    - Eliminating purified nitrogen consumption (generation)

#### Optimization by Process Technology, Transfer Point

- Final product adjustment by COOH-level, IV-level, residence times
  - reduce catalyst consumption
  - reduce additive consumptions

04.07.2024









|                       | The 7-S of Project Management (*)                                                     |
|-----------------------|---------------------------------------------------------------------------------------|
| Strategy              | Requirements of the project and the means to achieve them.                            |
| Structure             | Organizational arrangement that will be used to carry out the project.                |
| <mark>S</mark> ystems | Methods for work to be designed, monitored and controlled.                            |
| Staff                 | Selection, recruitment, management & leadership of those working on the project.      |
| <mark>S</mark> kills  | Managerial & technical tools available to the project manager and the staff.          |
| Style/culture         | The underlying way of working and inter-relating within the work team or organization |
| Stakeholders          | Individuals and groups who have an interest in the project process or outcome         |



#### Process Advantages:

- Change downstream information into activities either in Polycondensation or in SSP independently
  - Changing / Adjusting parameter settings in both sections coordinated
  - Changing / Adjusting polymer composition (recipe)
- Process optimization for CPU and SSP together

#### Technological Advantages:

- Interplay of forces from both, normally independent, production units
  - Off-streams used as feed-streams in the conjunctive facility
  - Common technological design philosophy is reducing number of subsuppliers and by this costs for spare-parts

#### Economical Advantages:

- Combined optimization reduces catalyst consumption and/or additive consumptions
- Optimized split of work-load (IV-lift) offers additional capacity

## PET Poly & SSP, Benefits for our Client (2)



#### Management Advantages:

- Reduced work-load for clients Project Manager
  - One supplier = One's responsibility
  - Reducing amounts of cooperation meetings
- Client's problems are Supplier's tasks
- Support to achieve FDA approval



#### Result: Minimizing the risks by achieving the project success factors!

High-Quality

Meet the outcomes of the project, both, functional and performance features.

- Within Budget
- On-time